防御网络攻击的计算机网络需要及时应对警报和威胁情报。关于如何响应的决定涉及基于妥协指标的多个节点跨多个节点协调动作,同时最大限度地减少对网络操作的中断。目前,PlayBooks用于自动化响应过程的部分,但通常将复杂的决策留给人类分析师。在这项工作中,我们在大型工业控制网络中提出了一种深度增强学习方法,以便在大型工业控制网络中进行自主反应和恢复。我们提出了一种基于关注的神经结构,其在保护下灵活地灵活。要培训和评估自治防御者代理,我们提出了一个适合加强学习的工业控制网络仿真环境。实验表明,学习代理可以有效减轻在执行前几个月几个月的可观察信号的进步。所提出的深度加强学习方法优于模拟中完全自动化的Playbook方法,采取更少的破坏性动作,同时在网络上保留更多节点。学习的政策对攻击者行为的变化也比PlayBook方法更加强大。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Language models have become increasingly popular in recent years for tasks like information retrieval. As use-cases become oriented toward specific domains, fine-tuning becomes default for standard performance. To fine-tune these models for specific tasks and datasets, it is necessary to carefully tune the model's hyperparameters and training techniques. In this paper, we present an in-depth analysis of the performance of four transformer-based language models on the task of biomedical information retrieval. The models we consider are DeepMind's RETRO (7B parameters), GPT-J (6B parameters), GPT-3 (175B parameters), and BLOOM (176B parameters). We compare their performance on the basis of relevance, accuracy, and interpretability, using a large corpus of 480000 research papers on protein structure/function prediction as our dataset. Our findings suggest that smaller models, with <10B parameters and fine-tuned on domain-specific datasets, tend to outperform larger language models on highly specific questions in terms of accuracy, relevancy, and interpretability by a significant margin (+50% on average). However, larger models do provide generally better results on broader prompts.
translated by 谷歌翻译
Recent methods demonstrate that data augmentation using counterfactual knowledge can teach models the causal structure of a task, leading to robust and generalizable models. However, such counterfactual data often has a limited scale and diversity if crowdsourced and is computationally expensive to extend to new perturbation types if generated using supervised methods. To address this, we introduce a new framework called DISCO for automatically generating high-quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters the generation to distill high-quality counterfactual data. We show that learning with this counterfactual data yields a comparatively small student model that is 6% (absolute) more robust and generalizes 5% better across distributions than baselines on various challenging evaluations. This model is also 15% more sensitive in differentiating original and counterfactual examples, on three evaluation sets written by human workers and via human-AI collaboration.
translated by 谷歌翻译
Multi-document summarization (MDS) has traditionally been studied assuming a set of ground-truth topic-related input documents is provided. In practice, the input document set is unlikely to be available a priori and would need to be retrieved based on an information need, a setting we call open-domain MDS. We experiment with current state-of-the-art retrieval and summarization models on several popular MDS datasets extended to the open-domain setting. We find that existing summarizers suffer large reductions in performance when applied as-is to this more realistic task, though training summarizers with retrieved inputs can reduce their sensitivity retrieval errors. To further probe these findings, we conduct perturbation experiments on summarizer inputs to study the impact of different types of document retrieval errors. Based on our results, we provide practical guidelines to help facilitate a shift to open-domain MDS. We release our code and experimental results alongside all data or model artifacts created during our investigation.
translated by 谷歌翻译
Language tasks involving character-level manipulations (e.g., spelling correction, many word games) are challenging for models based in subword tokenization. To address this, we adapt the interchange intervention training method of Geiger et al. (2021) to operate on type-level variables over characters. This allows us to encode robust, position-independent character-level information in the internal representations of subword-based models. We additionally introduce a suite of character-level tasks that systematically vary in their dependence on meaning and sequence-level context. While simple character-level tokenization approaches still perform best on purely form-based tasks like string reversal, our method is superior for more complex tasks that blend form, meaning, and context, such as spelling correction in context and word search games. Our approach also leads to subword-based models with human-intepretable internal representations of characters.
translated by 谷歌翻译
In data-driven systems, data exploration is imperative for making real-time decisions. However, big data is stored in massive databases that are difficult to retrieve. Approximate Query Processing (AQP) is a technique for providing approximate answers to aggregate queries based on a summary of the data (synopsis) that closely replicates the behavior of the actual data, which can be useful where an approximate answer to the queries would be acceptable in a fraction of the real execution time. In this paper, we discuss the use of Generative Adversarial Networks (GANs) for generating tabular data that can be employed in AQP for synopsis construction. We first discuss the challenges associated with constructing synopses in relational databases and then introduce solutions to those challenges. Following that, we organized statistical metrics to evaluate the quality of the generated synopses. We conclude that tabular data complexity makes it difficult for algorithms to understand relational database semantics during training, and improved versions of tabular GANs are capable of constructing synopses to revolutionize data-driven decision-making systems.
translated by 谷歌翻译
Trajectory-User Linking (TUL) is a relatively new mobility classification task in which anonymous trajectories are linked to the users who generated them. With applications ranging from personalized recommendations to criminal activity detection, TUL has received increasing attention over the past five years. While research has focused mainly on learning deep representations that capture complex spatio-temporal mobility patterns unique to individual users, we demonstrate that visit patterns are highly unique among users and thus simple heuristics applied directly to the raw data are sufficient to solve TUL. More specifically, we demonstrate that a single check-in per trajectory is enough to correctly predict the identity of the user up to 85% of the time. Moreover, by using a non-parametric classifier, we scale up TUL to over 100k users which is an increase over state-of-the-art by three orders of magnitude. Extensive empirical analysis on four real-world datasets (Brightkite, Foursquare, Gowalla and Weeplaces) compares our findings to state-of-the-art results, and more importantly validates our claim that TUL is easier than commonly believed.
translated by 谷歌翻译
The two popular datasets ScanRefer [16] and ReferIt3D [3] connect natural language to real-world 3D data. In this paper, we curate a large-scale and complementary dataset extending both the aforementioned ones by associating all objects mentioned in a referential sentence to their underlying instances inside a 3D scene. Specifically, our Scan Entities in 3D (ScanEnts3D) dataset provides explicit correspondences between 369k objects across 84k natural referential sentences, covering 705 real-world scenes. Crucially, we show that by incorporating intuitive losses that enable learning from this novel dataset, we can significantly improve the performance of several recently introduced neural listening architectures, including improving the SoTA in both the Nr3D and ScanRefer benchmarks by 4.3% and 5.0%, respectively. Moreover, we experiment with competitive baselines and recent methods for the task of language generation and show that, as with neural listeners, 3D neural speakers can also noticeably benefit by training with ScanEnts3D, including improving the SoTA by 13.2 CIDEr points on the Nr3D benchmark. Overall, our carefully conducted experimental studies strongly support the conclusion that, by learning on ScanEnts3D, commonly used visio-linguistic 3D architectures can become more efficient and interpretable in their generalization without needing to provide these newly collected annotations at test time. The project's webpage is https://scanents3d.github.io/ .
translated by 谷歌翻译
Contrastive learning has emerged as a competitive pretraining method for object detection. Despite this progress, there has been minimal investigation into the robustness of contrastively pretrained detectors when faced with domain shifts. To address this gap, we conduct an empirical study of contrastive learning and out-of-domain object detection, studying how contrastive view design affects robustness. In particular, we perform a case study of the detection-focused pretext task Instance Localization (InsLoc) and propose strategies to augment views and enhance robustness in appearance-shifted and context-shifted scenarios. Amongst these strategies, we propose changes to cropping such as altering the percentage used, adding IoU constraints, and integrating saliency based object priors. We also explore the addition of shortcut-reducing augmentations such as Poisson blending, texture flattening, and elastic deformation. We benchmark these strategies on abstract, weather, and context domain shifts and illustrate robust ways to combine them, in both pretraining on single-object and multi-object image datasets. Overall, our results and insights show how to ensure robustness through the choice of views in contrastive learning.
translated by 谷歌翻译